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Abstract 

An approach to ab initio protein tertiary structure prediction based on building 

and scoring libraries of folds was tested at the CASP3 experiment.  We present blind 

predictions for five helical targets varying in length from 31 to 114 residues.  Our 

method was able to predict most of each structure correctly to about 6 Å Cα root-mean-

square deviation (RMSD), with the exception of the largest target.  Because distance 

geometry is used to constrain every pair of predicted helices to a generic distance range, 

inadequate sampling of tertiary folds occurs for larger targets or targets with poorly 

assigned helical residues.  However, for targets with 5 helices or fewer, the native inter-

helical distances are more compatible with the generic bounds, and sampling improves 

to the extent that near-native fold selection is possible. 

 

Introduction 

Methods for ab initio protein structure prediction are needed to model sequences 

for which there is no similar structure or sub-structure available in the database.  One 

type of ab initio method calls for the construction of a library of candidate folds, from 

which a single structure is specified as most likely to be native-like (Cohen et al., 1979; 

Covell & Jernigan, 1990; Hinds & Levitt, 1992; Hinds & Levitt, 1994; Huang et al., 1998; 

Huang et al., 1999; Park & Levitt, 1996; Park et al., 1997; Shortle et al., 1998).  By 



decoupling the search from the scoring, this approach shifts the burden towards 

reasonable heuristics for fold construction and away from the reliance on a particular 

scoring function to guide a folding simulation. 

Our method, the details of which are published elsewhere (Huang et al., 1999), 

can be applied to small (< 100 residues) targets that are known or predicted to be 

helical.  Encouraged by our results from controlled testing, we tested the method at the 

third Critical Assessment of techniques for protein Structure Prediction (CASP3: 

http://predictioncenter.llnl.gov/).  For this international community-wide 

experiment, participants submitted models of proteins for which experimentally-

determined three-dimensional structures were imminent.  Here we present our results 

for five small helical targets.  Three of the targets were assessed in the “ab initio” 

category, and two in the “fold recognition” category, as structurally-similar folds were 

found in the Brookhaven protein databank (PDB) (Bernstein et al., 1977).  For all but the 

largest target (114 residues) the method was able to predict most of the structure 

correctly to about 6 Å Cα root-mean-square deviation (RMSD). 

 

Methods 

A library of structures for each target is generated using metric matrix distance 

geometry and a list of predicted and generic restraints.  First, we used the PHD server 

(http://www.embl–heidelberg.de/predictprotein/predictprotein.html) to guide our 

prediction of helical boundaries, which we kept as fixed units throughout the procedure 

(Rost & Sander, 1993; Rost et al., 1994).  Idealized intra-helical distances were derived 

from these predicted helical segments.  Next, we used the predicted solvent accessibility 

profiles, also taken from PHD, to choose a contact residue near the center of each 

predicted helix.  We assigned a generic inter-Cα distance range between every pair of 

these designated residues. A range of 5 – 11 Å was chosen for smaller targets; for larger 

targets the upper bound was raised to 15 Å.  After metrization and embedding, each 



structure was subjected to refinement against the input distances and torsion restraints 

that enforce the correct handedness of the helices. 

After the addition of side-chains (Levitt, 1992) and 200 steps of steepest-descent 

energy minimization against the ENCAD force field (Levitt et al., 1995), each structure 

was then scored with a normalized linear combination of three scoring functions: an all-

atom distance-dependent probability function (Samudrala & Moult, 1998), a simple 

inter-residue contact function (Park et al., 1997), and a hydrophobic compactness 

function (Samudrala et al., 1999).   The top-scoring folds in each library were then 

collected for a consensus distance geometry procedure, which yielded up to 18 different 

structures (Huang et al., 1998).  These various consensus models were a product of two 

parameters: the number of top-scoring structures in the input set {50, 100, 500} and the 

weighting scheme {unweighted, Boltzmann-weighted, linearly weighted}.  Taking into 

account both mirror images resulted in total of 3 x 3 x 2 = 18 structures.  Consensus 

structures tended to be characterized by malformed helices caused by mutually 

incompatible restraints.  Using the Cα trace of the consensus structure as a template, we 

fit the predicted secondary structure using a off-lattice build-up algorithm with a 4-state 

Ramachandran representation (Park & Levitt, 1995). 

For each target, 5 models were submitted, though for some targets we used a 

threading-style approach in addition to this distance geometry method.  We discuss 

only the ab initio distance geometry results here.  Human intervention played a role in 

the selection of the final models.  For instance, consistency with putative biochemical 

function and structural motifs (e.g. helix-turn-helix), was sought whenever applicable.  

Often, high-scoring models that were very similar to other high-scoring models were 

disregarded.  Typically the submitted set comprised a diverse mix of top-scoring 

models in the library and consensus structures.  The targets selected were T0065 (31 

residues, SinI protein), T0056 (114 residues, DnaB helicase), T0061 (76 residues, protein 

HDEA), T0079 (96 residues, MarA protein), and the first 75 residues of T0083 (cyanase).  



These sequences did not have any detectable sequence similarity with proteins of 

known structure.   The number of residues predicted for each target was based strictly 

on the sequence provided by the CASP3 organizers (with the exception of T0083).  For 

T0065, T0061, and T0079, the sequences of the respective experimental structures were 

shorter in length than the sequence given.  These RMSD values thus reflect truncation of 

the models for consistency with the structures determined by experiment.  

Computation of side-chain relative solvent accessibility was performed with the 

NACCESS software (Hubbard & Thornton, 1993).  Software for distance geometry 

calculations is available at http://dasher.wustl.edu/tinker/. 

 

Results and Discussion 

Quality of fold libraries 

In Table I, we list for each target the identifier, length of sequence, length of 

experimental structure in common with the model, the library size, the RMSD range in 

the library, and the secondary structure prediction accuracy.  With the exception of the 

small helical target T0065, near-native folds were only sparsely generated.  The RMSD 

ranges reflect the raw distance geometry structures, i.e. before side-chain construction 

and energy minimization. 

 

T0056 (DNAB): Despite knowing the secondary structure assignment (provided by the 

CASP3 organizers), sampling of near-native folds proved difficult.  Good sampling was 

hampered by the generic specification of restraints between all pairs of helices.  

Although the side-chains of all the predicted contact residues are buried in the NMR 

structure (PDB: 1jwe), they were not all in the generic 5 to 15 Å range.  For a protein 

with six helices, there are 15 unique inter-helical distances, 5 of which were greater than 

15 Å in DNAB (the greatest of which was 25 Å).  One structure was only 6.7 Å RMSD 



from the native; however, this was the only structure within 8 Å out of 2616 folds.  The 

structure of DNAB is depicted in Figure 1. 

 

T0061 (HDEA): We collected two different libraries for HDEA, totaling 2428 folds 

between them (Table I).  Both assumed that the correct structure had 5 helices, but the 

placement of helices 4 and 5 was slightly different between the two libraries.   The 

reported three-state accuracy (Q3) in Table I reflects the average of the two values (66% 

and 71%).  The library that used the better secondary structure prediction exhibited 

lower average RMSD and minimum RMSD (data not shown).  The quality of the 

sampling was compromised by the presence of the first predicted helix (residues 3 to 8 

in the entire 89 residue sequence).  The first 9 residues are missing in the crystal 

structure (PDB: 1bg8; Figure 2).  If these missing residues do not actually form a helix 

that abuts the rest of the native structure, it is likely that considering the N-terminal 

helix would disrupt the building of a native-like model.  To test this hypothesis, we 

removed the first 9 residues from our model and regenerated the library, keeping the 

positions of the helices and contact residues as before.  After 1200 trials, the average 

RMSD of the library with better secondary structure prediction dropped from 11.3 Å to 

10.7Å, and the best fold in the library improved from 6.2 Å to 5.3 Å. 

 

T0065 (SINI): Only 31 out of the original 57 residues were visible in the crystal structure 

of SINI (PDB: 1b0n:B).  This is a helix-hairpin that docks with its binding partner (SINR) 

to form a repressor/anti-repressor complex (Lewis et al., 1998). The mode of 

oligomerization is very distinctive, as two helices from each molecule interdigitate to 

bury an unusually extensive core (Lewis et al., 1998).  The effect of this interaction is to 

splay the two helices of SINI apart (Figure 3), resulting in a distance of 14.8 Å between 

predicted contact residues.  Nevertheless, since the location of the helical boundaries 



was reasonably predicted by PHD, many structures in the library resembled the SINI 

molecule in isolation; roughly 10% (183 / 1880) of the folds were within 4 Å RMSD. 

 

T0079 (MARA): As in the case of DNAB, above, model construction of MARA was 

frustrated by the designation of more inter-helical contacts that might be reasonably 

expected.  The crystal structure of MARA (PDB: 1bl0; Figure 4) is composed of two 

subdomains, each of which contains a DNA-binding helix-turn-helix motif (Rhee et al., 

1998).  Thus, 10 out of the 15 predicted inter-helical distances were greater than the 

upper-bound of 15 Å.  The increased distance error is a result of the nature of the 

bipartite fold and the misprediction of Val33 as a buried residue (side-chain relative 

solvent accessibility: 39%).  Four of the five inter-helical distances that involve this 

residue are greater than 15 Å.  No fold in the library was within 8 Å RMSD of the native 

structure.  This target was assessed in the fold recognition category. 

 

T0083 (CYNS): The structure of CYNS is divided into two domains.  We submitted 

models for the 5-helical N-terminal domain (Figure 5), which was evaluated as a fold 

recognition target. The domain prediction was based on visual inspection of the 

secondary structure prediction, which was quite accurate (Q3 = 83%).  Even though 2 

out of the 5 designated contact residues were partially exposed to solvent, only 2 out of 

the 10 inter-helical distances exceeded the upper bound set at 15 Å.  Distance geometry 

generated 48 folds out of 1472 within 8 Å RMSD of the native, the best of which was 6.2 

Å RMSD. 

 

Quality of predicted models 

For each target, up to 5 models were selected for submission. Table I lists the 

accuracy of the best submitted model (in its entirety).  Also shown is the contiguous 

fragment with lowest RMSD and its corresponding length in residues.  In a recent study 



(Huang et al., 1999), we found that modeling a structure with the consensus inter-Cα 

distances from a Boltzmann-weighted subset of 50 folds (the “bw50” model) was more 

effective overall than simply saving the best-scoring fold, though there were exceptions.  

For purposes of comparison, we also list the best-scoring fold in the library and the 

consensus model built from the aforementioned parameters (Table II).  In some cases, 

these models may have actually been members of the submitted set. 

 

T0056 (DNAB): None of the submitted models were native-like, as the best complete 

model was over 12 Å RMSD.  Neither the best-scoring nor the bw50 model could have 

improved upon this model.  The best possible consensus model, which coincidentally is 

the best-scoring of the 18 consensus models, was 9.05 Å RMSD from the native.  One of 

the 3 submitted models had a 70 residue fragment, spanning the last four helices, 

correctly predicted within 7.65 Å RMSD.  Despite knowing the exact placement of the 

six helices, the poor sampling of tertiary arrangements precluded the possibility of a 

good prediction. 

 

T0061 (HDEA): We consider this target to be a partial success.  The best submitted 

model, which was 89 residues in length, matched the corresponding 76 residues of the 

four-helical native structure to 9.8 Å RMSD.  A contiguous 60 residue segment matched 

the native to an accuracy of 6.7 Å (PDB residues 16 to 75); this corresponded to the first 

three helices of 1bg8 (Figure 2).  Given the difficulty posed by marginal secondary 

structure prediction and the problematic effect of the non-existent N-terminal helix (see 

above), we were satisfied with how the method fared with this target.  The CASP3 

assessors mentioned our model of HDEA in their analysis of the targets of “medium” 

difficulty (Orengo et al., in preparation). 

  



T0065 (SINI): This small motif was considered by the CASP3 assessor to be an “easy” 

target (Orengo et al., in preparation).  Assuming one used a reasonable secondary 

structure prediction, most models for this 31-residue inhibitor would not stray too far 

from the correct fold.  The difficulty of this target lay in predicting the rather unusual 

mode of binding with its molecular partner (Lewis et al., 1998) which in turn reveals the 

relative disposition of the two helices.  Our best submitted model was 3.8 Å RMSD, and 

using the best-scoring fold in the library would have been a slight improvement at 3.4 Å 

(Figure 3). 

 

T0079 (MARA): Although the final models were rather unimpressive for this target 

(best submitted model: 11.4 Å RMSD), we note that the central core of four helices (70 

residues) is correctly predicted to 5.7 Å in one of our 4 models.  The bipartite shape of 

1bl0 separates the first and sixth helices by 24 Å at our designed residues; clearly this is 

a source of error.  Indeed, Figure 4 shows that these terminal helices have been tethered 

closely together in our best model, which otherwise matches the native structure quite 

well.  

 

T0083 (CYNS): One of our 5 models for the first domain of CYNS was correct to 8.7 Å.  

Most of the coordinate error can be attributed to the unstructured tail at the N-terminus 

(Figure 5) and the incorrect placement of the fifth predicted helix.  Neglecting these 

segments, our best model (4 helices, 60 residues) was accurate to 5.4 Å RMSD.  Had we 

submitted the bw50 model for this target, our entire 75-residue prediction would have 

been within 7 Å RMSD from the native (Table II).   

 

Conclusions 

Based on our experiences at CASP3 and with our test cases (Huang et al., 1999), it 

appears that our method is most effective with targets of 5 helices and fewer.  The 



recurring theme throughout this study is that successful prediction begins with a good 

library, and a good library depends critically on the choice of input restraints.  For 

larger structures, our scheme of enforcing generic inter-helical distances is inadequate.  

We see this shortcoming in the cases of T0056 and T0079, wherein low near-native 

concentration in the libraries doomed the prediction of the entire structure to failure.  

For smaller targets like T0083, if the number and location of the helices are accurately 

predicted, the fraction of near-native structures present in the library rises to more 

acceptable levels. When secondary structure prediction is less accurate, or when a 

predicted helix is absent in the native structure, the quality of the library will also 

suffer, leading to partially correct structures (e.g. the case of T0061).  

The scoring function has performed up to expectation in blind prediction testing.  

After disregarding T0065 as a stringent test case, the function was unable to select the 

best structures in the respective libraries for three of the four remaining targets (T0056, 

T0061, and T0079).  However, as discussed earlier, this failure is primarily a 

consequence of the poor quality and scarcity of the best folds.  In the single case (T0083) 

for which a substantial population of native-like folds was present, the scoring function 

performed quite well, selecting a native-like fold as the best scoring in the library.  The 

bw50 fold (not submitted) would have been even a better choice, indicating that there 

were other native-like folds present in the low-energy subset. 

The method as it currently stands is easily improved due to its extreme 

simplicity.  One way to circumvent the problems of over-specifying distance restraints 

between helices is to be more selective in predicting distances.  In this regard, one 

promising technique is contact prediction by correlated mutation analysis (Gobel et al., 

1994; Ortiz et al., 1998).  We have begun to assess the suitability of this approach for our 

prediction protocol.   
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Table I 
 
Target len 

(seq) 
len 

(str) 
nFolds RMSD Range 

(Å) 
<RMS> 
(Å) 

nMod Best Model 
RMSD (Å) 

Frag RMSD 
(len) 

T0056/dnab 114 114 2616 6.73 - 18.04 13.99 3 12.07 7.65 (70) 
T0061/hdea 89 76 2428 6.18 - 14.83 11.54 5 9.83 6.67 (60) 
T0065/sini 57 31 1180 3.01 -  7.42 4.93 4 3.82 n/a 
T0079/mara 104 96 3018 8.01 – 17.29 13.20 4 11.39 5.69 (70) 
T0083/cyns 75 75 1472 6.15 – 14.22 12.47 5 8.70 5.43 (60) 
 
 
 
Table II 
 
Target len Consen Select 

T0056/dnab 114 12.11 13.12 
T0061/hdea 76 10.25 11.78 
T0065/sini 31 4.61 3.39 
T0079/mara 96 12.00 15.38 
T0083/cyns 75 6.97 8.70 
 
 


