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Abstract 

For successful ab initio protein structure prediction, a method is needed to identify native-like structures from a set 
containing both native and non-native protein-like conformations. In this regard, the use of distance geometry has shown 
promise when accurate inter-residue distances are available. We describe a method by which distance geometry 
restraints are culled from sets of 500 protein-like conformations for  four small helical proteins generated by the method 
of Simons et al.  (1997).  A consensus-based approach was applied in which every inter-& distance was measured, and 
the most frequently occurring distances were used as input restraints for distance geometry. For each protein, a structure 
with lower coordinate root-mean-square (RMS) error than the mean of the original set was constructed; in three cases 
the topology of the fold resembled that of the native protein. When the fold sets were filtered for the best scoring 
conformations with respect to an all-atom knowledge-based scoring function, the remaining subset of SO structures 
yielded restraints of higher accuracy. A second round of distance geometry using these restraints resulted in an average 
coordinate RMS error of 4.38 A. 
Keywords: ab initio folding; distance geometry; energy functions; protein structure prediction 

How the sequence of a polypeptide determines its three-dimensional 
structure remains one of the most important unanswered questions 
in molecular biology. So-called “ab initio” computational  ap- 
proaches seek the overall fold of the polypeptide, often by starting 
with a random or extended chain and searching for the most en- 
ergetically favorable, or statistically probable, conformation for 
the sequence. An alternative approach is first to sample conforma- 
tional space  as exhaustively as possible, given computational lim- 
its, then to apply a scoring function to assess the fitness of each 
candidate structure. In either case, reduction of the available con- 
formational space is achieved by discretization on a lattice (Covell, 
1992, 1994; Hinds & Levitt, 1992, 1994; Kolinski & Skolnick, 
1994; Vieth et al., 1994) or sampling in torsion space (Wilson & 
Doniach, 1989; Bowie & Eisenberg, 1994; Dandekar & Argos, 
1994, 1996; Monge et  al., 1995; Mumenthaler & Braun, 199.5; 
Srinivasan & Rose, 1995; Sun et al., 1995, Yue & Dill, 1996; 
Simons et  al., 1997). However, reduction of the search space also 
decreases the fidelity with which the native fold can be repre- 
sented. This is problematic, since knowledge-based scoring functions 
that recognize native folds have difficulty separating near-native 
folds from non-native folds (Park et al., 1997). Whereas ab initio 
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minimization methods can produce native-like tertiary structures, 
even without knowledge of the correct secondary structures, com- 
plete convergence to a native-like fold has not been achieved (Si- 
mons et al., 1997; Skolnick et  al.,  1997). Clearly, devising a 
procedure to select a single native-like fold from the pool of plau- 
sible, low-energy folds is an important hurdle remaining to be 
surmounted. 

Distance-based techniques are  a powerful way  to process and 
optimally satisfy an overdetermined set of inter-residue and inter- 
atomic distances resulting in the generation of a single structure or 
a tightly clustered family of structures. Early work by Kuntz et al. 
(1979) used known disulfide bridges and simple methods to pre- 
dict turns and hydrophobic contacts, coupled with minimization of 
distance matrix error, to generate structures as close as  5 A root- 
mean-square (RMS) from the native BPTl fold. In the context of 
more recent ab initio folding studies, these methods have har- 
nessed inter-atomic distance information using one of two ap- 
proaches. The first is the incorporation of inter-residue distance 
information as terms in a variable target function to be used in a 
specialized buildup and minimization procedure (Hanggi & Braun, 
1994; Mumenthaler & Braun, 1995) or as a term in a model force 
field with many components (Skolnick et  al., 1997). The second 
approach, metric matrix distance geometry, utilizes a mathematical 
projection from distance space to three-dimensional space known 
as embedding (Have1 et al., 1983) to yield a single structure con- 
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sistent with the distances, chiralities, and other geometric infor- 
mation taken as input. Using this type of algorithm, which will 
henceforth be referred to as “distance geometry,” Taylor and co- 
workers determined that a subset of native inter-Ca distances, 
combined with the appropriate local geometry and a hydrophobic- 
ity term expressed as predicted inter-residue distances, can cor- 
rectly generate native-like tertiary structures (Aszodi et al., 1995). 
Despite the significant advances represented in these recent stud- 
ies, distance-based methods applied to ab initio structure predic- 
tion still require external information, such as the correct secondary 
structure or a subset of native inter-residue distances, or else fail to 
converge completely to a native-like fold (Aszodi et al., 1995; 
Mumenthaler & Braun, 1995; Skolnick et al., 1997). 

In the current study we describe a general application of metric 
matrix distance geometry in ab initio structure prediction. Our 
method considers a set of structures collected from an ab initio 
folding protocol and derives a consensus set of  inter-Ccu distances 
from the set. Here we show that distance geometry is able to take 
the consensus distance information and produce a fold with accu- 
racy better than the mean average in the set. Moreover, if there are 
near-native folds in sufficient concentration present in the collec- 
tion, the set of consensus distances will result in a near-native fold. 
Consensus methods have also been used to enhance the predictions 
of side-chain conformation when many near-native templates are 
available (Tuffery et al., 1997; Huang et al., 1998). 

Results and  discussion 

We chose as our test case the structures of Baker and coworkers 
(Simons et al., 1997), who employed a Bayesian scoring function 
to anneal the locally favored conformations of a protein chain into 
protein-like structures. We found this test set particularly interest- 
ing as the structures were built without knowledge of the second- 
ary structure, yet many near-native folds were generated. Four 
small helical proteins were chosen as targets. Their identities, Pro- 
tein Data Bank (PDB) (Bernstein et al., 1977) identifiers, size, and 
secondary structures follow: Protein A (Ifc2:C; 43 residues, 3 
helices), the homeodomain protein (1hdd:C; 57 residues, 3 heli- 
ces), 434  cro repressor (2cro; 65 residues, 5 helices), and calbindin 
(4icb;  76 residues, 5 helices). A set of 500 independently generated 
structures was available  for each protein. There  is  a clear inverse 
relationship between protein length and the overall quality of the 
predictions in each set (Table I ) .  The structures overall show the 
packing density, secondary structure elements, and solvent acces- 

Table 1. Results for distance geometry modeling“ 

Protein Min Max Mean SD DG <DG ConErr 

Ifc2:C 3.1 1 10.48 4.91 1.63 3.95 0.30 0.38 
Ihdd:C 2.75 12.81 6.82 2.69 3.78 0.05 0.99 
2cro 4.20 12.49 8.72 1.99 7.17 0.22 2.00 
4icb 4.70 14.00 9.40 2.40 6.50 0.16 1.73 

aThe columns Min, Max, Mean, and  SD refer to the coordinate RMS 
error of the folds provided by Simons et  al. (1997). The RMS error of the 
structure generated by distance geometry is listed in the DG  column.  The 
fraction of structures with RMS  error less than the distance geometry 
model is shown under <DG. The column  ConErr refers to the RMS error 
of the input constraints relative to the distance geometry model. 

sibility patterns of native structure, even if the tertiary arrange- 
ments are often incorrect (Simons et al., 1997). 

For the 500 proteins in each set, all inter-Ca distances were 
measured except  for those between consecutive residues. The 
inter-& distances were stored in 1 8, bins. The most frequently 
occurring distance bin for each inter-residue pair was taken as the 
consensus value for that inter-residue distance. These constraints, 
along with the local bonded geometry, chiralities, and standard van 
der Waals atomic radii, constituted the only input for the distance 
geometry module in the TINKER software package (Ponder, 1998; 
http://dasher.wustl.edu/tinker/). Distance restraints were speci- 
fied as a 1 8, range between lower and upper bounds and corre- 
sponded exactly with the consensus bins, also I in width. Details 
regarding the embedding algorithm, the metrization procedure, an- 
nealing protocol, and performance are presented in Materials and 
methods. We saved the first structure that presented the correct 
global chirality (e.g., the presence of right-handed helices) and 
compared it with the experimentally determined structure of the 
target protein. In all cases, further distance geometry structures 
produced from the same set of input restraints were essentially 
identical to the first structure chosen. 

For all four proteins, the consensus distances yield a structure 
that has a coordinate RMS error less than the mean structure in the 
respective set of 500 structures (Table I ) .  In the case of lfc2, a 
significant fraction (35%) of the structures is near-native, i.e., within 
4 8, coordinate RMS error of the correct structure. Hence, it is 
perhaps not surprising that a near-native structure results from 
distance geometry after the consensus distances are considered. 
However, the example of 1 hdd demonstrates that even if only 
8% of the  original  structures  contain near-native folds,  these 
conditions are sufficient for our method to recover a near-native 
structure (3.78 8, coordinate RMS error). Moreover, the model 
constructed by distance geometry is more accurate than 95% of 
the structures in the set. On the other hand, in the cases where the 
parent structures are less accurate, such as for 2cro and 4icb, the 
distance geometry models also reflect the errors in the inter-residue 
distances. The model of 4icb resembles many of the very best 
structures present in the set of 500, and the correct topology of the 
structure is recognizable, even if it is more expanded than the 
native structure (Fig. ID). 

The distance geometry models of lfc2 and lhdd present well- 
formed helical structure (Fig.  IA,B). In contrast, the model of 2cro 
exhibits deformed secondary structure (Fig. 1 C). This distortion is 
caused by a set of consensus constraints that are incompatible with 
each other, the possibility of which is an inherent danger associ- 
ated with a consensus-based method. Table 1 lists the RMS error 
between the inter-& distance constraints (taken as the center of 
the consensus bin) and the actual inter-& distance found in the 
respective distance geometry structure. The integrity of the sec- 
ondary structure elements in 4icb is qualitatively intermediate, 
consistent with the trend seen in the RMS restraint error. 

In addition to distorting the secondary structures, mutually in- 
consistent restraints can cause errors in the global fold description. 
This phenomenon is also seen in the modeling of 2cr0, in which 
the structure generation is dominated by a few distances defined by 
residues distant in the sequence. For example, consider the distri- 
bution of inter-& distances between residues 35 and 65 of 2cro. 
It is rather broad, with an average value of 15.4 8, and a standard 
deviation of 4.8 8, (Fig. 2A). The corresponding distance in the 
native structure is 18.4 A, while the consensus distance bin is 
13-14 8,. Distance geometry satisfies this incorrect constraint, and 
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Fig. 1. Distance geometry models of four small helical proteins. In every figure. the distance geometry model is depicted in dark grey 
and the crystal structure in white. A: Protein A (Ifc2:C). R: The homeodomain protein (1hdd:C). C: Cro repressor (2cro). D Calhindin 
(4icb).  For clarity, the models shown side by side for 2cro and 4ich. Molecular graphics images were produced using the Midasplus 
software system from the Computer Graphics Laboratory, University of California, San Francisco (Ferrin et al., 1988). 

others akin to it, by projecting a Cartesian structure with a inter-& than forming a helix and packing properly against the other heli- 
distance of 12.3 A. Inspection of the structure (Fig. IC) shows that ces. Therefore, proper placement of the C-terminal segment would 
the C-terminal tail protrudes through a four-helical ring, rather result in a structure grossly inconsistent with the input constraint. 
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Fig. 2. A: Histogram  of  inter-Ca distances for  residues  36 and 65.  This 
histogram  represents all the inter-Ca  distances for residues  36 and 65 in the 
set of 500 parent structures of 2cro  generated by Simons  et al. (1997). The 
consensus  distance is the bin ranging from 13 to 14 A. R: Histogram of a 
subset of inter-Ca distances for residues 36 and 65. This histogram plots 
the  inter-&  distances for residues  36 and 65 in the  subset  of  50  best- 
scorin  Ctructures of 2cro.  The  consensus distance, the bin ranging  from I8 
to 19 1; closely  matches that of  the  native  structure. 

The S O 0  structures of 2cro do comprise several folds of mod- 
erately good quality, e.g., the 44 structures between 4 and 6 8, 
RMS error. In the hopes of amplifying the signal carried by these 
near-native structures, we filtered the SO0 structures via the all- 
atom scoring function RAPDF (see Materials and methods) and 
saved the SO best-scoring structures, i.e., the top 10%. Prior to 
scoring the folds, it was first necessary to construct all-atom mod- 
els of the proteins. Side  chains were added by the software of 
Bower et al. (1997). Steric clashes were removed by steepest- 
descent minimization under the CHARMM22b force field param- 
eters (Brooks  et al., 1983; A. McKerell, Jr., pers. comm.) and using 
the TINKER software package. 

The top-scoring SO structures with respect to RAPDF were gen- 
erally of better quality than the parent set of SO0 (Table 2). The 
mean RMS error decreased more than I 8, for 2cro. More impor- 
tantly, the consensus distance between residues 36 and 65 in- 
creased to 17-18 A, very close to the actual distance of 18.4 A. 
Another round of distance geometry yielded a structure with 
4.26 8, coordinate RMS error, essentially the limit presented by the 
parent set of SO0 (Table I ) .  As shown in Figure 3, the resulting 
structure appears less deformed in the regions of secondary struc- 
ture. Repeating the filter for the other three proteins also improves 
the distance geometry models overall (Table 2), indicating that 
scoring with RAPDF has the desired effect of improving the qual- 
ity of the input restraints. Further improvement in the quality of the 

Table 2. Distance geornetn models using constraints 
fiom a score-filtered  subset 

Protein Min Max Mean SD DG <DG 

lfc2:C-SO  3.30  5.98  4.17  0.42  4.08  0.38 

2cro-50  4.20  12.49  7.61  2.29  4.27 0.04 
4icb-50  4.85  13.13  8.51  2.40  5.78  0.10 

IhddC-50 2.75  7.98  4.74  1.23  3.38  0.12 

”The columns Min, Max, Mean. and SD refer to the  coordinate  RMS 
error of the top-scoring  50  folds.  The RMS error of the structure  generated 
hy distance geometry is listed in the DG column.  The fraction o f  structures 
with RMS error less than the distance geometry  model is shown  under 
<DG. 

secondary structures, but  not in the overall coordinate RMS error, 
can be achieved by widening the distance between the upper and 
lower bounds for all nonlocal interactions while keeping the win- 
dow centered at the same consensus distance (data not shown). The 
softening of conflicting long-distance restraints effectively allows 
the helices to regularize. 

Encouraged by the results of the filtering procedure, we assessed 
the accuracy of the top-scoring structure with respect to RAPDF. 
Table 3 shows that the top-scoring structures are amongst the best 
structures available in their respective sets. In terms of overall 
RMS accuracy, the top-scoring structures and the distance geom- 
etry structures are comparable. However, the distance geometry 
structure of 4icb reflects the use of distances taken from structures 
better than the one proposed by the scoring criterion alone: the 
coordinate RMS fell from 6.82 to 5.78 A. Evaluation of the con- 
sistency of this function with regards to other ab initio test sets is 
currently underway (Samudrala & Moult, 1998). 

Our consensus-based distance geometry approach shows prom- 
ise in the context of native-like fold generation for two reasons. 
One, the sets of structures contain folds that are related to each 
other to varying degrees. In a case like lfc2, where nearly a third 
are near-native, the consensus method mostly chooses the inter- 
residue distances reflecting the dominant subpopulation. Even for 
the I hdd set, in which near-native folds are not present in high 
concentration, a consensus method still works because the distance 
errors in members of the fold set are distributed differently, such 
that the consensus method is able to largely preserve the correct 
distances and remove the incorrect distances as noise. The second 
reason why the distance geometry approach succeeds is that the 
problem of generating a single Cartesian structure from  all  the 
inter-& distances is greatly overdetermined. Even  with as few as 
one or two correct inter-residue distances per residue, a native-like 
fold can be built by metric matrix distance geometry (Aszodi et al., 
1995). The method described here provides (n - l ) ( t i  - 2)/2n 
constraints per residue, or approximately 30 constraints per residue 
for a small protein of 60 amino acids. Thus, any incorrect inter- 
residue distances that  may result from the consensus procedure can 
be compensated by the other distances. Distance geometry is very 
powerful for generating a “best” structure from such an overdeter- 
mined set of conflicting constraints. 

Our results suggest that when handled properly, distance geom- 
etry can circumvent one of the major problems that continues to 
plague ab initio folding, the selection of a single structure from the 
many promising candidates. Certainly the final accuracy of  the 
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Fig. 3. Distance geometry model  of 2cro using filtered restraints. The consensus restraints from  the top SO scoring structures with 
respect to RAPDF (Samudrala & Moult. 1998) were used to build a model  of cro repressor, shown in dark grey. The model closely 
resembles that of the crystal structure. shown in  white. 

model is dependent on the quality of the parent structures used 
to obtain the distance restraints. However, this approach is sufti- 
ciently general such that irrespective of the accuracy of the ab 
initio method being used, a final structure that is better than av- 
erage is generated. We have also shown that applying a more 
discriminating scoring function to the folds sets can enhance and 
improve the distance geometry models. In other words. a new 
method of  fold generation to obtain the fold sets may  not  be 
necessary if one can simply filter the structures already obtained 
by the method of choice. Finally, this method is insensitive to 
the choice of algorithm for generating candidate structures, whether 
by minimization or enumeration, on a lattice or in torsion space. 
We expect that this consensus-based distance geometry method 
will prove useful as a tool for the ab initio prediction of protein 
structure. 

Materials and  methods 

Generation of ah initio structures 

Backbone-only structures for the four small helical proteins were 
generated by the method of Simons et al. (1997) and provided by 
the laboratory of  David Baker (University of Washington, Seattle, 
Washington). Briefly, the procedure begins with an extended poly- 
peptide chain. Guided by a Bayesian scoring function, it chooses 
random moves in torsion space under a simulated annealing sched- 
ule. The moves at each residue position are limited to those in a 
library of fragments of unrelated protein structures with similar 
local sequences (Bystroff et al., 1996; Simons et al., 1997). For 

Table 3. Highest ranking structures by an all-atom 
scoring jirnction 

Structure RMSD 

1 fc2:C 
1 hdd:C 
2cro 
4icb 

3.68 
2.85 
4.26 
6.82 

each protein, SO0 low-energy, compact folds were independently 
generated. 

Prior to scoring with the all-atom function (below). side chains 
were added by the software package SCWRL  (Bower et al.. 1997). 
The side-chain placement strategy utilizes a backbone-dependent 
rotamer library (Dunbrack & Karplus, 1993) to position side chains 
such that the total steric clash is minimized. Since there was usu- 
ally residual steric clash. we subjected each structure to 500 steps 
of steepest descent minimization using the CHARMM22b force- 
field (Brooks et al., 1983; A. McKerell, pers. comm.) Electrostatic 
terms were neglected and a cutoff of 12 8, was applied for non- 
bonded interactions. All minimization was performed in Cartesian 
space with  the TINKER software package. 

Metric nlotrix distance geometn with pctirwise metri:ation 

All metric matrix distance geometry calculations were performed 
with the program distgeom from the TINKER suite. The metriza- 
tion technique, developed in its original form by  Havel and  Wuthrich 
(l984), greatly improves the sampling properties of  the distance 
geometry algorithm (Havel, 1990). In this study. structures are 
generated using 10% random pairwise metrization, which is effi- 
ciently achieved via a fast shortest path update algorithm (Dionne, 
1978) used to resmooth the lower and upper bounds matrices every 
time a trial interatomic distance is chosen. The trial distances are 
selected from approximately Gaussian distributions between the 
lower and upper bounds (Oshiro et al., 1991). The center of the 
distribution between the upper and lower bounds is automatically 
set by distgeom based on the number and type of input restraints. 
The initial distribution center is set to = BI. + a(& - B!,). 
where B,. and Bu are the lower and upper bounds for a particular 
atom pair. For all proteins considered here, the empirical factor 
a = I.6S/(B,,x)1’4 is used, where B,,, is the maximal upper 
bound in the entire structure following the initial bounds smooth- 
ing. This mechanism consistently yields folds with an approxi- 
mately correct overall radius of gyration. Following metrization, 
embedding, and majorization, the generated structure is  refined  via 
10.000 steps of simulated annealing against a set of penalty func- 
tions, which enforce local geometry, chirality, excluded volume, 
and the input distance restraints. Further details of the algorithm 
and its application to NMR NOE structure determination can be 
found in Hodsdon et al. (1996). 
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Residue-specific all-atom probability discriminatory 
function (RAPDF) 

The all-atom scoring function RAPDF (Samudrala & Moult, 1998) 
was used to calculate the probability of a native or “correct” struc- 
ture given a set of interatomic distances. The conditional proba- 
bilities are compiled by counting frequencies of distances between 
pairs of atom types in a  database of protein structures. All nonhy- 
drogen atoms are considered, and the description of the atoms is 
residue specific, i.e., the C a  of an alanine is different from the Ca 
of a glycine. This results in 167 atom types. We divide the dis- 
tances observed into 1 8, bins ranging from 3 to 20 8, .  Contacts 
between atom types in the 0-3 8, range are placed in a separate bin, 
resulting in total of 18 distance bins. For observations of distances 
between pairs of atoms between the atoms of a side chain and the 
main-chain atoms of that residue, a separate table of frequencies is 
compiled using eighteen 1 8, bins ranging from 0-18 8, .  

We compile tables of scores proportional to the negative log 
conditional probability that one is observing a native conformation 
given an interatomic distance  for all possible pairs of the 167 atom 
types for the 18 distance ranges. Given a set of distances in a 
conformation, we can evaluate the probability that the conforma- 
tion represents a “correct” fold by summing the scores for all 
distances and the corresponding atom pairs. A full description of 
this formalism is given in Samudrala and Moult (1998). 
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