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INTRODUCTION

The accuracy of protein structure prediction

The goal of protein structure prediction is to model the three-dimen-

sional (3D) structure for a protein sequence with an accuracy compara-

ble to that observed by experiment. In the last 2 decades, significant pro-

gress has been made on the methods of template-based (comparative)

modeling and template-free modeling (e.g., de novo or ab initio) predic-

tions,1–4 with the former yielding the most accurate models.5

The accuracy of template-based prediction depends on the selection of

a proper template and the quality of the sequence alignments between

the target and the template sequences. For modeling at low sequence

similarity, template-based prediction generates low accuracy structures

compared with the corresponding experimental structure, even when the

best available template structures are identified.6 Free modeling can pro-

duce accurate models of small, single-domain proteins7; however, these

methods generally produce medium- to low-resolution models for

proteins comprising more than 100 residues or multiple domains.

Achieving higher resolution requires an improvement in efficiently

searching the conformational space, designing more accurate scoring

functions, and an efficient refinement protocol. Although consider-

able advancement has been achieved in solving these problems, it

has not led to an obvious improvement in the accuracy of free mod-

eling predictions.8 Therefore, it remains unclear whether methods

for generating initial models will ever consistently produce structures

of accuracy within the high-quality experimental range. Thus, there

is a need for methods that increase the accuracy of initial predicted

models, such that the refined models are sufficient for mechanistic

studies of function and drug design.

Abilities and limitations of
constraints-based modeling

Methods for constraints-based modeling have been well developed

to construct and refine 3D conformations to be consistent with
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ABSTRACT

The principal bottleneck in protein structure

prediction is the refinement of models from

lower accuracies to the resolution observed by

experiment. We developed a novel constraints-

based refinement method that identifies a high

number of accurate input constraints from initial

models and rebuilds them using restrained tor-

sion angle dynamics (rTAD). We previously cre-

ated a Bayesian statistics-based residue-specific

all-atom probability discriminatory function

(RAPDF) to discriminate native-like models by

measuring the probability of accuracy for atom

type distances within a given model. Here, we

exploit RAPDF to score (i.e., filter) constraints

from initial predictions that may or may not be

close to a native-like state, obtain consensus of

top scoring constraints amongst five initial mod-

els, and compile sets with no redundant residue

pair constraints. We find that this method con-

sistently produces a large and highly accurate set

of distance constraints from which to build

refinement models. We further optimize the

balance between accuracy and coverage of con-

straints by producing multiple structure sets

using different constraint distance cutoffs, and

note that the cutoff governs spatially near versus

distant effects in model generation. This com-

plete procedure of deriving distance constraints

for rTAD simulations improves the quality of ini-

tial predictions significantly in all cases evaluated

by us. Our procedure represents a significant

step in solving the protein structure prediction

and refinement problem, by enabling the use of

consensus constraints, RAPDF, and rTAD for

protein structure modeling and refinement.
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spatial constraints from diffraction and resonance experi-

ments.9 These methods have also been extensively

applied to both template-based modeling10,11 and free

modeling prediction.7,12 There are two major categories

of constraint-based modeling algorithms: distance geome-

try embedding, which uses a metric matrix of distances

from atomic coordinates to their collective centroid, to

project distance space to 3D space13–15; and minimiza-

tion, which incorporates distance constraints in variable

energy optimization procedures, such as restrained tor-

sion angle dynamics (rTAD), molecular dynamics, simu-

lated annealing, or Monte Carlo searches.16–19

rTAD provides at present the most efficient way to

calculate a protein structure from constraints, by working

with internal coordinates rather than Cartesian coordi-

nates. The number of degrees of freedom is decreased, as

the covalent structural parameters (i.e., bond lengths) are

kept fixed at their optimal values during the calcula-

tion.20 In addition, simulated interatomic forces are used

to constrain protein conformations and thereby greatly

reduce the effective conformational space.9

Typically, rTAD simulations start by producing a set of

secondary structure elements. These elements are then

assembled into compact structures using input distance

constraints, with the major degrees of freedom in these

calculations being the u/w dihedral angles of the poly-

peptide chain, for which the preferences are defined by

the Ramachandran plot.21 Experimentally derived con-

formational constraints have proven to be sufficiently

strong to guide rTAD minimization into a correct struc-

ture.9

Previous studies estimated the minimum number of

distance constraints required to obtain effective con-

straints-based models. The earliest work by Smith-Brown

et al. showed that three correct distances between each

predicted secondary structure element were sufficient to

generate a conformation of 3–5 Å alpha carbon root

mean squared deviation (CaRMSD) to the experimental

model.22 Later work by Aszodi et al. showed that a con-

formation below 5 Å CaRMSD could be obtained when

at least N/4 correct constraints were used, where N is the

number of residues in the protein. However, selection of

the correct fold was not achieved because of the lack of a

knowledge-based force field.14 MONSSTER by Skolnick

et al. is able to fold small proteins using N/7 constraints

for a proteins and N/4 constraints for b and a/b pro-

teins.18 However, the necessity to derive all distance con-

straints from NMR experiments or experimentally deter-

mined secondary structures is a significant limitation.23

Later work by the Skolnick group using restrained Monte

Carlo searches showed that the generation of 3.0–6.5 Å

CaRMSD models using distance constraints derived from

multiple sequence alignments is possible.19 Further work

by Huang et al. showed that consensus distance geometry

can reliably yield structural models within 6.5 Å

CaRMSD for small helical proteins.24,25 On the basis of

this and previous work, we hypothesize the numbers of

constraints required to achieve models of various resolu-

tions (see Fig. 1).

Despite the significant advances represented in earlier

work, effective constraints-based modeling thus far

requires external information, including correct second-

ary structure assignment and sufficiently accurate dis-

tance constraints. Moreover, the accuracy of constraints-

based modeling depends on the amount and specificity

of available information. Distance constraints may be

derived from initial predictions, such as secondary struc-

ture and 3D conformational predictions, without experi-

mental information. However, constraints derived from

predictions are noisy or ambiguous in nature. For exam-

ple, the best performing group in CASP6 contact predic-

tion achieved only an accuracy of 25.5% and coverage of

3.7%,29 whereas longer distance contact prediction accu-

racy was limited to around 20%.30

It remains unclear whether rTAD modeling using a

limited number of correct constraints is robust enough

to successfully handle the unavoidable presence of incor-

rect constraints in sets derived from predictions. There-

fore, identification of accurate constraints remains a

major bottleneck to constraints-based predictive model-

ing techniques, which represents the focus of this work.

Constraints can be derived from the
consensus of multiple initial predictions

For a given target protein, several different template

structures are usually available. A given template/align-

ment combination is unique in its similarity to the target

protein in different ways, thus template-based modeling

using different templates/alignments produces a variety

of structural models for a given target protein.31 Even

using the same template/alignment, different modeling

methods sometimes yield highly dissimilar models

because of variations in the side chain and loop building

processes.32 The goal of free modeling prediction is to

obtain the overall polypeptide fold, often by starting with

a random chain and searching for the most energetically

favorable or statistically probable conformations. The

process itself determines the diversity of structural infor-

mation presented by different free modeling predictions.4

Even when global similarity is not significant, initial

models share structural information, particularly within

functional sites.

We therefore ask the following question: given a set of

initial predictions derived from multiple sources or

methods, how can one take into account all of the avail-

able information in a rational way to derive accurate and

sufficient constraints for rTAD? We hypothesize that dis-

secting the best initial models into a set of consensus

interatomic distances, filtered and weighted by the Bayes-

ian probability of being native-like, will result in con-

straint sets of sufficient accuracy and coverage to enable
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rTAD methods to produce final models more closely

resembling biologically relevant conformations.

Objective

To refine predicted 3D conformations using rTAD

techniques, the two major problems are (i) how to

obtain constraints of good quality and quantity from ini-

tial predictions and (ii) how to make use of these con-

straints effectively. To answer the former question, we use

a consensus-based method to derive an initial set of dis-

tance constraints from five initial template-based model-

ing predictions, filter and weight the set using a Bayesian

approach (RAPDF), which assigns a likelihood score to

each constraint using parameters derived from the

observed distances in a set of 4000 experimentally deter-

mined nonredundant protein structures, then subdivide

the set by distance cutoffs, and finally evaluate the ability

of this combined method to effectively produce large and

accurate sets of distance constraints. To answer the latter

question, we evaluate the ability of rTAD simulations

using the program Combined assignment and dynamics

algorithm for NMR applications (CYANA)20 with input

constraints sets of differing accuracy, to produce refined

conformations of higher quality. Finally, we present the

performance of the constraint derivation and rTAD

simulation methods together as one contiguous pipeline,

for the refinement of 30 predicted protein structures.

RESULTS AND DISCUSSION

RAPDF scores versus consensus
constraint accuracy

Deriving accurate constraints from initial structure

predictions is one of the major problems in using rTAD

simulations for refinement. Inaccurate consensus con-

straints trap rTAD simulations in local energy minima

and therefore should be filtered out. Our goal was to

design a method to discriminate accurately predicted dis-

tance constraints from inaccurate ones. The probability

of each distance constraint being accurate was estimated

using the all-atom discriminatory function RAPDF. To

quantify the relationship between the accuracy of a con-

sensus constraint and the assigned RAPDF score, a total

of 10 subsets of consensus constraints were derived

according to their RAPDF ranking cutoffs, that is, 10%

rank and better, 20% rank and better, and so forth. The

accuracies of consensus5 and consensus4 constraints, rep-

resenting constraints derived from the consensus of five

and four of the give initial selected models, respectively,

in each subset were plotted against the respective RAPDF

Figure 1
Accuracy of protein structure models as a function of native-like constraints obtained. Extremely accurate models are generated when protein

structure prediction methods are combined with various methods for deriving interatomic distance constraints. Our estimation here is based on a

survey of such approaches (see introduction for further detail). These constraints are not only obtainable from bench methods such as NMR,26

Bayesian interpretation of noisy NMR data,27 or crosslinkers used as molecular rulers combined with mass spectrometry,28 but also from

consensus of predictive models as presented in this work. Low-resolution models are used to derive hypotheses and guide bench experiments,

whereas the highest resolution models are used to enable detailed functional studies and therapeutic discovery. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]

T. Liu et al.
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ranking cutoffs. To quantify the relationship between the

accuracy of consensus contacts and the RAPDF rank, and

therefore the reliability of RAPDF to work as such a fil-

ter, we calculated the accuracy of consensus constraints

as Accuracy 5 [The number of nonlocal contacts for

which the selected distance constraint fell within 0.25 Å

of the correct distance]/[Total number of nonlocal con-

tacts considered as a subset].

Figure 2 shows that the accuracy of consensus con-

straints correlates with the RAPDF ranking cutoffs, sug-

gesting that RAPDF scores of the consensus contacts can

be used as a standard for selecting constraints of higher

accuracy. Figure 2 also shows that consensus5 is almost

always more accurate than consensus4, with only one

exception in 30 (CASP7 target T0298). The average accu-

racy of consensus constraints of the 30 targets was also

calculated and compared (Table I), which confirm that

the average accuracy of consensus constraints correlates

with the RAPDF ranking. The average accuracy of the

top 10% RAPDF score consensus5 constraints is �59%,

whereas the average accuracy when including all con-

straints drops to 42%. These results indicate that the

Figure 2
The accuracy of consensus constraints correlates with the RAPDF ranking. For each of the 30 benchmark targets, 10 subsets of consensus contacts

were derived according to their RAPDF rank cutoffs, as set 10%, set 20%, . . . set 100%. The consensus constraint accuracy is defined as Accuracy

5 [The number of nonlocal contacts for which the selected consensus distance constraint falls within 0.25 Å of the correct distance]/[Total nonlocal

contacts]. These plots show that the consensus constraint accuracy is better for higher RAPDF ranking cutoffs, indicating that RAPDF scores can be

used as a standard for selecting constraints of higher accuracy. In addition, these plots show that consensus5 is almost always more accurate than

consensus4. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Table I
The Relationship Between the Accuracy of Consensus Constraints and the RAPDF Ranking

RAPDF rank 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Consensus5 59% 54% 51% 48% 47% 46% 45% 44% 43% 42%
Consensus4 44% 40% 37% 36% 34% 33% 33% 32% 32% 31%

Ten subsets of consensus constraints were derived according to their RAPDF ranking cutoffs. The accuracy of distance constraints consensus5 and consensus4 in each

subset was calculated. The accuracy of consensus constraints correlates directly with the RAPDF ranking cutoffs. The accuracy of consensus5 is always higher than that

of consensus4.
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consensus-based method combined with the Bayesian

approach is able to filter out many incorrect distance

constraints, resulting in higher accuracy constraints.

Constraint accuracy versus rTAD
model quality

How does the inaccuracy inherent to predictive model-

ing affect the performance of the rTAD simulations? To

answer this question, we derived five constraints sets of

progressively worsening accuracy for each target protein,

by assigning increasingly more divergent distance values

to randomly selected constraints within an increasingly

larger proportion of constraints derived from the best

initial predictions. These five sets share the same number

of constraints for each atom type pair, with varying pro-

portions of correct distances derived from the experi-

mental model and incorrect distances derived from pre-

dicted models, such that the constraint accuracy is the

only factor that may affect the results of the rTAD simu-

lations. Each set of constraints was directly input to

CYANA, which constructed a set of 1000 conformations

satisfying the constraints using TAD for each subset for

each protein. The best refined CYANA model generated

in each set of restrained simulations was compared with

the best initial model of that protein by calculating

CaRMSDs to the corresponding experimental structure.

Figure 3(A) shows the improvement achieved by the

rTAD simulations using consensus constraints of different

accuracies. In all tested target proteins, the improvement

of the best CYANA models is more significant when the

consensus constraints of higher accuracy are used in

restrained simulations. In other words, the performance

of rTAD simulations is improved when the accuracy of

constraints increases. In a few cases, a perfect trend

between accuracy of constraints and final models was not

observed, wherein better models were produced in the

second or third highest accuracy set. However, in all

cases, the models derived from 100% accuracy sets were

better than models derived from the lowest accuracy set.

A possible explanation is the tendency for models to

become trapped in local energy minima: as limited time

and number of seeds are used in the simulations, the

result can be an insufficient sampling space for some

proteins. Another explanation is a real alternate confor-

mation. In either case, the overall result indicates that

obtaining constraints of higher accuracy is important to

achieve higher quality conformational predictions.

We also calculated the average accuracy for each pro-

gressively more accurate constraint set, across the 30 tar-

get proteins (Table II). The increase of constraint accu-

racy (lowest to highest set) produced a direct relationship

with the quality of the best refined CYANA models, rang-

ing from 4.5 to 1.9 Å average CaRMSD improvement

from the original 4.8 Å average CaRMSD. Thus, for sim-

ulations using higher accuracy constraints (higher and

highest sets), the average improvement of the best

CYANA models to the best initial models is 2.0 to 3.0 Å

CaRMSD, whereas when lower accuracy constraints are

used (lowest set) the average improvement is only 0.3 Å

CaRMSD. Therefore, the CaRMSD of refined CYANA

models is improved when higher accuracy consensus

constraints are used in rTAD simulations.

Finally, we evaluated all conformations generated from

the five constraint set types for the 30 targets as one

sample pool. Figure 3(B) shows that the percentage of

CaRMSD improvement between the best CYANA models

and the best initial models correlates highly with the con-

sensus constraint accuracy, measured as a correlation

coefficient of 0.8. Improvement was seen in only 14 of 27

refinement processes with input constraint accuracy

below 40%, whereas in all but 1 of 123 cases with input

constraint accuracy above 40%, the models were refined

to greater accuracy.

In summary, although the randomization of inaccurate

constraint distances in this experiment potentially creates

a worst case scenario for each prescribed constraint accu-

racy set (wherein a 3 Å constraint could arbitrarily be

assigned as 20 Å, rather than a closer value which might

be more realistically derived from in an initial model),

the quality of protein structure prediction is predictably

improved when using distance constraints of more than

40% accuracy in rTAD simulations.

Maximizing constraint set coverage

Attempting to model regions of proteins without con-

straints, using rTAD, results in the flexible tails familiar

to depictions of structures from NMR peaks. Thus, with-

out a sufficiently large set of constraints, the simulations

will result in largely unfolded regions, and therefore, we

need as many accurate constraints as possible. By using a

batch-by-batch process, the number of residue pairs rep-

resented by selected constraints is estimated by the equa-

tion: N*(N 2 4)/10, where N is the total number of

residues in the protein. For a protein of more than 104

residues, the number of constraints will be larger than

10N. Compared with previous methods, this amount of

constraints is considerably large.14,18,19,24,25 The

constraint accuracy corresponding to increasing coverage

can be seen in Table III. The final model accuracy pro-

duced when using this compilation method in a realistic

modeling situation is seen in Figure 4.

Constraint distance cutoff

Four subsets of constraints were derived using different

distance cutoffs, including cutoffs of 8, 12, 16, and 20 Å

(Table III). These four constraint sets were used as input

for simulations using CYANA (see Fig. 4). For each sub-

set, two different sets of dihedral angle parameters were

tested to compare the influence of angle constraints on

T. Liu et al.
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Figure 3
(A) The relationship between the accuracy of consensus constraints and the effectiveness of rTAD simulations. The qualities of the best refined

models generated by simulations using five sets of constraints with different accuracies, evaluated by calculating CaRMSDs to the corresponding

experimental structures. The CaRMSD of the best initial model is indicated by a line parallel to the horizontal axis. In all 30 tested target proteins,
the quality of refined models is improved when the constraints of higher accuracy are used in rTAD simulations, indicating the importance of

obtaining higher quality constraints. (B) The relationship between the accuracy of input constraints and the effectiveness of the rTAD simulations.

Five constraint sets of differing accuracy were developed for each of 30 targets. The five best conformations generated from each constraint set are

taken together as a pooled sample. The magnitude of improvement from the best initial model to the best refined model correlates with the

accuracy of the consensus constraint sets used in rTAD simulations. The Spearman correlation coefficient of this relationship is 0.8.
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restrained simulations. The two sets are compiled from

the best initial models and the best RAPDF scoring mod-

els, respectively. In essence, we sought to define the limi-

tation caused by nonideal selection of the input model,

which is a potential weak link as it relies on only one

model rather than a consensus as found with other

aspects of our method. In total, eight sets of different

distance constraint and dihedral angle parameters were

tested for each of the 30 tested target proteins. From

each set of simulations, a total of 1000 refined CYANA

models were generated. All these 1000 conformations

were ranked by the discriminatory function RAPDF, and

the top 10 scoring models were used for further analysis.

For each cutoff-derived distance constraint set, we cal-

culated the average accuracy and coverage of the con-

straint set itself, and the refined CYANA models gener-

ated from different sets of simulations as well (Table III).

When using a distance cutoff of 8 Å, the average accu-

racy of 30 tested targets was 45% within a 0.5 Å width,

whereas the coverage of total residue pairs in the tested

targets was only 7%. The improvement of the best

refined CYANA models is about 0.6 Å CaRMSD, whereas

that of the best top 10 scoring CYANA model is only 0.2

Å CaRMSD. As the distance cutoffs change from 12, 16,

to 20 Å, the coverage of the constraints increases from

16, 24, to 30%, respectively. As well, the left panel of Fig-

ure 4(A) shows that the best CYANA models generated

at these longer cutoffs always have lower CaRMSDs than

the corresponding best initial models, whereas those pro-

duced with an 8 Å cutoff show higher CaRMSDs for 4

of the 30 targets, and, in general, the quality of the best

CYANA models is not as good as those at cutoffs of 12,

16, and 20 Å. Improvements of the best refined CYANA

models are on an average of 1.1 Å CaRMSD in all three

cases. In addition, the improvement of the averages of

the best top 10 scoring CYANA models average 1.1, 1.2,

and 1.3 Å CaRMSD, respectively. This indicates that

using a distance cutoff of 20 Å results in the largest

improvement. Directly, restrained simulations using con-

straints at longer distance cutoffs result in conformations

of higher quality.

For example, the best initial model of T0332 is a con-

formation with 2.8 Å CaRMSD, whereas the best refined

CYANA models generated by simulations at distance cut-

offs of 8, 12, 16, and 20 Å are 2.0, 1.9, 1.7, and 1.7 Å

CaRMSD, respectively. Significant conformational

improvements of the CYANA models generated with con-

straint sets cutoff at 20 Å are observed both in the core

and at the surface regions [Fig. 5(A)]. The explanation is

that nonsequential, long distance contacts are usually

Table II
The Relationship Between the Accuracy of Consensus Constraints and the Improvement of the Best CYANA Models in Terms of

Their CaRMSD to Their Experimental Structures

Constraint sets Set-1 Set-2 Set-3 Set-4 Set-5

Average accuracy of constraint sets 30% 60% 73% 87% 100%
Average CaRMSD of the best CYANA models (� CaRMSD) 4.5 3.4 3.1 2.7 1.9
Average improvement of the best CYANA models (� CaRMSD) 0.3 1.4 1.7 2.1 2.8

Five sets of constraints of different accuracies were input into CYANA. The best refined CYANA model generated in each set of restrained simulations was compared

with the best initial model of that protein by calculating their CaRMSDs to the corresponding experimental structure. The average accuracy of each set of constraints

was then calculated and compared with the original average accuracy of 4.8 Å. Increasing accuracy of constraints (lowest to highest sets) improves the quality of the

best refined models, corresponding to average CaRMSDs from 4.5 to 1.9 Å. The average improvement of the best refined models to the best initial models is only 0.3 Å

CaRMSD when using constraints of lower accuracy (lowest set), whereas using constraints of higher accuracy (higher and highest sets), the average improvement is 2 to

3 Å CaRMSD. Thus, the quality of the refined models is improved when consensus constraints of higher accuracy are used in rTAD simulations.

Table III
The Effect of Spatial Constraints on the Restrained Torsion Angle Dynamics Simulations Is a Trade Off Between the Accuracy and the Coverage

Cutoffs Cutoff 8 Cutoff 12 Cutoff 16 Cutoff 20

Constraints accuracy 45% 38% 36% 34%
Constraints coverage 7% 16% 24% 30%
Simulations using dihedral angles derived from best initial models

Improvement of the best CYANA models (� CaRMSD) 0.6 1.1 1.1 1.1
Improvement of the best top 10 scoring CYANA models (� CaRMSD) 0.2 1.1 1.2 1.3

Simulations using dihedral angles derived from best scoring initial models
Improvement of the best CYANA models (� CaRMSD) 0.6 1.1 1.1 1.0
Improvement of the best top 10 scoring CYANA models (� CaRMSD) 0.2 1.1 1.2 1.3

The rTAD simulations were performed using consensus constraints at distance cutoffs of 8, 12, 16, and 20 Å, and various input sources. For each subset of constraints,

the average accuracy and coverage were calculated. As the distance cutoff lengthens from 8, 12, 16 to 20 Å, the accuracy of constraints increases from 7, 16, 24 to 30%;

the improvement of the best refined model increases from 0.6 to 1.1 Å CaRMSD; and the improvement of the best top 10 scoring refined model increases from 0.2 to

1.3 Å CaRMSD. Simulations using constraints of different distance cutoffs (12, 16, and 20 Å) show similar improvement, suggesting that the efficacy of restrained simu-

lations results from the trade off of the constraints accuracy and the constraints coverage. Improvement by the restrained simulations using dihedral angles derived from

different initial models is the same, indicating that the input parameters of dihedral angles do not significantly affect the results of rTAD simulations.

T. Liu et al.
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involved in the interactions between surface and core

regions, and thus are important for correct core packing

and folding of the overlying surface.

We found a few exceptions where refined CYANA

models generated by simulations at a cutoff of 8 Å

showed a higher quality than those at cutoffs of 12, 16,

and 20 Å. By inspecting the conformations, we found

that all the initial models of these exceptions contain

extended N- or C-termini. The major conformational

differences between the initial models and the best

CYANA models are observed in the extended N- or C-

termini. For example, the best initial model of T0311

[Fig. 5(B)] is a conformation with 9.0 Å CaRMSD,

whereas the best refined CYANA models generated by

simulations at distance cutoffs of 8 and 20 Å are 3.6 and

5.8 Å CaRMSD, respectively. Neither the core conforma-

tion nor the C-terminus is correctly folded in the best

initial model of T0311, whereas the CYANA models gen-

erated at cutoffs of both 20 and 8 Å have a correctly

folded core conformation. However, the extended C-ter-

minus in the CYANA model at a cutoff of 20 Å is not

properly folded, whereas the C-terminus in the CYANA

model at a cutoff of 8 Å is extended in a similar manner

to that C-terminus in the experimental structure. Our

previous benchmark results have shown that constraints

at shorter distance cutoffs are more accurate than those

at longer distance cutoffs. For target T0311, the accuracy

of constraints is 38% at the 20 Å cutoff, whereas the

Figure 4
The influence of distance cutoffs and dihedral angles on the rTAD simulations. The results of the simulations were evaluated by calculating

CaRMSDs of the refined models to the corresponding experimental structures. A total of 30 targets from CASP7 were tested. Simulations were

performed using consensus constraints at distance cutoffs of 8, 12, 16, and 20 Å, respectively. The dihedral angles were compiled from the best

initial models (row A) or the best scoring initial models (row B). The left panel compares the accuracies of the best initial model to the best refined

models. The right panel compares the accuracies of the best scoring initial model selected by RAPDF to the best of the top 10 scoring refined

models. For all 30 targets, the best refined models generated at cutoffs of 12 Å (cyan line), 16 Å (red line), and 20 Å (green line) always show

better quality (lower CaRMSDs) than the corresponding best initial models (blue line). For almost all targets, the best top 10 scoring refined

models generated at cutoffs of 12, 16, and 20 Å are more accurate than the corresponding best scoring initial models. Simulations using constraints

of different distance cutoffs (12, 16, and 20 Å) show similar improvement, indicating that the performance of restrained simulations results from

the trade off between constraint set accuracy and coverage. Simulations using constraints at a cutoff of 8 Å are not as effective as simulations at

cutoffs of 12, 16, and 20 Å. The performance of simulations using dihedral angles derived from different initial models is similar, indicating that

the input parameters of dihedral angles do not substantially affect the results of rTAD simulations in our protocol.
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accuracy of constraints is 60% at the 8 Å cutoff. The

above observation indicates that the inaccurate long dis-

tance constraints depreciate the restrained simulations for

proteins with extended termini where long distance con-

straints play important roles during the folding process.

Therefore, when a protein contains extended termini, its

folding process is more sensitive to the inaccurate con-

straints of long distances. Using a shorter distance cutoff

helps filter out contamination of inaccurate long distance

constraints and enhances the positive effects from accu-

rate local contacts between surface motifs, thereby

improving the simulation performance and producing a

conformation that is closer to the experimental structure.

In a real world prediction scenario, the best initial

model or the best refined model cannot always be

selected as the final conformation because of the lack of

a perfect discriminatory function. Therefore, we also

compared the accuracies of the best scoring initial model

selected by RAPDF and the best of the top 10 scoring

CYANA models by RAPDF [Fig. 4(A); right panel]. Again

refinement processes using distance constraints at cutoffs

of 12, 16, and 20 Å improve the initial predictions con-

sistently, whereas the process using distance constraints

at a cutoff of 8 Å does not as regularly improve the

initial predictions (with higher CaRMSDs).

Dihedral angles derived from RAPDF
selected models

We also investigated the effects of varying constraint

cutoff distances on rTAD simulations from different

dihedral angle sets. Figure 4(B) shows the refinement

Figure 5
(A) The experimental structure, the best initial model, and refined models of the T0332 protein. The initial model of T0332 is a conformation with

a 2.8 Å CaRMSD, whereas the best refined models generated by simulations at the distance cutoffs of 20 and 8 Å are 1.7 and 2.0 Å CaRMSD,

respectively. The significant conformational improvement of the refined model generated at a cutoff of 20 Å is found both in the core and at the

surface regions (marked by three dark arrows). This indicates that long distance constraints influence the interactions between surface and core

regions and thus are important for the correct folding of the surface and the core. (Figures were prepared with Molscript33 and Raster3D.34) (B)

The experimental structure, the initial model, and CYANA models of the T0311 protein. The best initial model of T0311 is a conformation with

9.0 Å CaRMSD, whereas the best refined models generated by simulations at the distance cutoffs of 20 and 8 Å are 5.8 and 3.6 Å CaRMSD,

respectively. Neither the core conformation nor the C-terminus is correctly folded in the best initial model of T0311. The refined CYANA models

generated at the 20 and 8 Å cutoffs both present a correctly folded core conformation. The difference between these two models is at the C-

terminus. The extended C-terminus in the CYANA model at the 20 Å cutoff is incorrectly folded, whereas the extended C-terminus in the CYANA

model at the 8 Å cutoff is closer to the experimental structure. This indicates that inaccurate long distance constraints depreciate the quality of the

rTAD simulations for proteins with extended termini in cases where long distance constraints play important roles during the folding process. The

use of accurate shorter distance cutoffs helps to filter out contamination from inaccurate long distance constraints, producing a conformation that

is closer to the experimental structure. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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results using dihedral angles derived from the best scor-

ing initial models, instead of the best initial models. Yet

again the best top 10 scoring CYANA models generated

at cutoffs of 12, 16, and 20 Å almost always have better

CaRMSDs than the corresponding initial models. Refine-

ment processes using dihedral angles derived from the

best scoring initial models have similar results to those

using dihedral angles derived from the best initial models

[Fig. 4(A)], indicating that within our setup the input of

dihedral angles does not greatly affect the rTAD perform-

ance, and that RAPDF is sufficient for selecting models

with dihedral angles within the permitted tolerance

range. In our work, dihedral angles were set with high

tolerance for variation to allow the conformation to

relax. Therefore, the input of dihedral angles does not

affect the simulation process considerably. A further step

of combining side chain modifications using SCWRL35

and minimization using ENCAD36,37 was applied, but

this does not substantially improve the quality of refined

models (data not shown).

Application to CASP7 targets

To further test the effectiveness of our refinement

method, the constraint selection and rTAD simulation

methods were applied to 64 CASP7 targets. Distance con-

straints at a cutoff of 20 Å and dihedral angle tolerances

compiled from the best initial models were directly input

into CYANA, generating a set of conformations that sat-

isfied the input constraints using rTAD. For each of the

64 test targets, a total of 1000 conformations were

obtained, and all conformations were ranked by the

RAPDF scoring function. The top 10 scoring models

were used for further analysis.

Figure 6 compares the input to output for our refine-

ment protocol. The left panel compares the accuracies of

the best initial model and the best CYANA models. The

right panel compares the accuracies of the best scoring

initial model and the best of the top 10 scoring CYANA

models selected by RAPDF. The average improvement

between the best initial models and the best refined mod-

els is 0.6 Å CaRMSD (left panel), with the most substan-

tial improvement of 4.4 Å CaRMSD. The average

improvement between the best top 10 scoring refined

models and the best scoring initial models is 0.9 Å

CaRMSD (right panel), with 7.3 Å CaRMSD being the

most substantial improvement. Our thorough bench-

marks on proteins containing a variety of folds and sizes

demonstrate that our rTAD method is effective in

improving the quality of protein structure prediction.

CONCLUSIONS

We demonstrate a multifaceted approach to derive

constraints of sufficient quantity and quality for use in

rTAD, which consistently refines initial predicted protein

Figure 6
Improvement of the refined CYANA models by using restrained torsion angle dynamics simulations with consensus constraints. For all 64 targets,
the accuracies of the initial predictions and the refined CYANA models were evaluated with CaRMSD model measurements. The CaRMSDs of the

initial models to the experimental structure were compared with those of the refined models. The left panel compares the accuracies of the best

initial model to the corresponding best refined models. The right panel compares the accuracies of the best scoring initial model selected by RAPDF

to the corresponding best of the top 10 RAPDF scoring refined models. The average improvement between the best refined models and the best

initial models is 0.6 Å CaRMSD (left panel), with the most substantial improvement of 4.4 Å CaRMSD. The average improvement between the

best top 10 scoring refined models and the best scoring initial models is 0.9 Å CaRMSD (right panel), with the most substantial improvement of

7.3 Å CaRMSD. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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structures of low and high quality to an average improve-

ment of 1.3 Å CaRMSD, ranging from 9.7 to 1.6 Å

CaRMSD from the initial model relative to the corre-

sponding experimental result. rTAD has been a promis-

ing method to refine predicted protein structures, but

until now, the inability to identify accurate constraints

from initial predictions prevented the use of constraint-

based methods for model refinement. Specifically, the

magnitude of improvement across a diverse set of target

protein structures has not been produced by other con-

straint-based modeling methods.14,18,19,24,25

Our method succeeds in consistently improving the

quality of protein structure predictions because a consid-

erable number of high-accuracy distance constraints are

derived and used in the process. This is achieved by

combining consensus filtering, Bayesian scoring, batch-

by-batch accumulation, and rTAD (each of which are

explained in respective Methods sections). The consensus

method preserves the interatomic distances modeled

from multiple template structures or are otherwise repro-

ducibly producible by contemporary initial modeling

methods, resulting in constraint accuracy up to 45%.

RAPDF is shown to be useful as a direct measure of the

probability of a distance constraint being accurate, by

identifying distances observed in other experimental

structures within the PDB, and removing rare or nonob-

served distances from damaging the modeling process.

The knowledge-based atom pair potentials of RAPDF

account for the differing propensities for stability of cer-

tain interatomic contact types in a protein conformation,

and therefore select constraints more likely to be

observed by experiment. The batch-by-batch selection

method removes constraints for atom pairs mapped to

residue pairs already incorporated by higher scoring

atom pairs, removing weakening redundancy, yet main-

taining coverage of roughly 10N for average-sized pro-

teins. By altering the constraint distance cutoff, we are

able to increase coverage without losing substantial accu-

racy; for example, when we increase the coverage above

30N the accuracy only drops to 34%. Thus, we are able

to tune the balance between constraint coverage and

accuracy. We further exploit the control of this balance

by using multiple cutoffs to produce separate CYANA

input constraint sets, which in turn produce a range of

models allowing for unanticipated sensitivities across the

range of naturally occurring proteins.

The cutoff distance used to limit the constraints influ-

ences the results of rTAD simulations (which seems to

effect set accuracy and coverage), and dihedral angle tol-

erances derived from the RAPDF selected model are suf-

ficient for use in CYANA model generation. In our study,

20 Å forms the maximal limit, as this is the upper limit

of all versions of RAPDF.38,39 For a globular protein,

restrained simulations using constraints at longer dis-

tance cutoffs often result in conformations of higher

quality. For a protein that contains extended termini, the

folding process is more sensitive to inaccurate long dis-

tance constraints. Using a shorter distance cutoff helps

filter out these contaminants, producing conformations

that are closer to the experimental structure. In auto-

mated prediction procedures, when the detailed confor-

mation of a protein is unknown, using a distance cutoff

of 20 Å is the best choice.

Previous to this work, the best blindly assessed contact

prediction method was exemplified as achieving an accu-

racy of only 25.5% and coverage of 3.7% for short range

contacts,29 whereas longer distance contact prediction

accuracy was limited to around 20%.30 Yet our Bayesian-

guided consensus compilation produces higher accuracy

with eight times more coverage (Table III). A recent con-

straint compilation method using beta carbons, hydrogen

bonds, and nonlocal short rage contacts, similarly using

consensus of multiple models, was reported to produce

constraint sets with an accuracy of 12.9% and a coverage

of 49.4%, comparable to our sets.29 Applying such a

constraint set in a reasonable prediction category (fold

recognition), the related model building method

improved �8 Å CaRMSD models to �7 Å CaRMSD to

the corresponding experimental conformation.29 This

method appears useful for course searches but it does

not create models better than 6 Å CaRMSD for the tar-

gets shown, which is generally thought to begin the range

of biologically relevant modeling. Additionally, bearing

the combinatorial nature of the method, the success may

be more a demonstration of increased sampling and a

good discriminatory function than direct refinement.

Nonetheless, this method could be successfully imple-

mented for hard targets before the application of our

own method, and in general, the constraint selection

methods can be combined with our own.

Directly, no previously published paper known to us

has demonstrated such consistent improvement across a

wide range of initial accuracies. For the 64 CASP8 dif-

fraction structure targets up to 400 residues in length, we

obtain improvement for 60 targets (94%), with initial

models ranging from 1 to 14 Å CaRMSD from the

experimental structure. Refinement of a similar spread of

initial model quality was recently demonstrated, which

more commonly but not consistently improves the initial

models.40 Thus, amongst the methods not limited by

local conformational searches, our method is unique in

its ability to predictably make structures better, or no

worse. More importantly, we do not propose this to be

the only method by which to refine initial models, rather

we hope that this will be used in concert with others,

such as searching the nearby conformational space or

iterations of template selection, fragment recompilation,

or secondary structure determination. In particular, our

method does nothing for refining alignments, which has

great potential gains even amongst the models we assess

in our manuscript. Ours does stand out by enabling con-

trol of the sampled space, by varying the number of
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input constraints; thus, we can potentially avoid limita-

tions of available templates, fragments, and local minima.

Our work is also related to the modeling methods by

Zhang et al.41 and Moglich et al.,42 which use a combi-

nation of rTAD and predicted constraints. The method

by Moglich et al. focuses on dihedral angle constraints

rather than interatomic distances, but was only tested on

a single protein.42 The method of Zhang et al. derives

constraints using secondary structure and local contact

prediction, yet was tested only on small helical pro-

teins.41 In our work, the dihedral constraints are relaxed

but the distance constraints are very tight, with an aver-

age tolerance less than 0.5 Å. With this approach, we are

able to achieve better estimations of the experimental

structure. Although multiple methods may be combined

to produce a superior approach, our method alone has

proven to be effective in consistently improving the accu-

racy of structure prediction for a variety of proteins of

different sizes and types.

The CASP7 assessors stated that only ‘‘seven cases of

over 10% improvement’’ over the template C-alpha trace

were observed for the 104 targets.43 As shown in Figure

6, our new method achieves this level of improvement

frequently: worse models are produced only rarely (4 of

64), whereas 10% improvement is achieved in the major-

ity of cases, and greater than 1 Å improvements are

made often (18 of 64). Finally, we assert that the

improvements seen for these targets are significant by

comparison to the best CASP7 participant group: the

average accuracy of the best models submitted by the

Zhang group for the 64 targets is 4.0 Å CaRMSD,

whereas our initial models average 4.8 Å CaRMSD and

our refinement method produces 3.5 Å CaRMSD.

In a real structure prediction scenario, this complete

procedure of deriving and using distance constraints in

restrained simulations improved the quality of structure

predictions significantly and consistently. Compared with

other methods for protein structure prediction and

refinement, our method provides reliable improvement

for a wide variety of conformations, because of the novel

ability to harness rTAD with a relatively huge abundance

of sufficiently accurate distance constraints.

Future work

The current aspects of our approach that warrant fur-

ther investigation include improved selection of input

and output models; iterative cycling wherein output

models would be used as input models in additional

rTAD rounds; further guiding torsional tolerances using

consensus amongst large clusters of models; enhancing

the speed of the lengthy CYANA runs; evaluating success

with input free modeling models or multiple template-

based modeling techniques, extending the entire RAPDF

formalism to evaluate further distant constraints, and to

identify key functional constraints.44

METHODS

Construction and selection of initial
template-based models

A total of 64 targets from the Seventh Community

Wide Experiment on the Critical Assessment of Techni-

ques for Protein Structure Prediction (CASP7)3 were

used to evaluate the effectiveness of our refinement pro-

tocol (see Supporting Information). The selection of tar-

get proteins was based on the following: (1) The target

sequence is shorter than 400 residues in length; (2) the

best initial model is closer than 10 Å CaRMSD to the ex-

perimental structure; (3) at least four of the five selected

initial models share a reasonable similarity between each

other, with respective CaRMSDs lower than 10 Å. For

benchmarking the refinement protocol parameters, we

selected the top 30 targets in terms of the CaRMSD of

the initial model to the corresponding experimental

structures.

For each target, sequence alignments were obtained

from the Bioinfo 3DJury server <http://meta.bioinfo.

pl/>.45 For each alignment, one initial comparative

model was generated using programs in the RAMP soft-

ware suite. To build conformations for the structurally

conserved regions, residues that were identical in the tar-

get and the template proteins were generated by copying

atomic coordinates for the main chain and the side chain

atoms, whereas residues that differed in side chain type

were constructed by using a minimum perturbation tech-

nique [graph theoretic paper, JMB 1998]. To build confor-

mations for the structurally variable regions, the programs

mcgen_exhaustive_loop and mcgen_semfold_loop from

the RAMP suite were used for short and long loops,

respectively.46,47 The former generates conformations by

exhaustively enumerating all possible main chain confor-

mations using a 14-state u/w model and selecting the best

using RAPDF. The latter uses fragment replacement with

simulated annealing to find the best combinations of these

fragments. Additional models were also obtained from the

Critical Assessment of Fully Automated Structure Predic-

tion experiment 5 (CAFASP5)48 after examining the

alignments to obtain extra variability in templates/align-

ments and ensuring that all residues had at least one pos-

sible conformation.

Initial model sets for each target were selected by a

clustering calculation of CaRMSDs between initial mod-

els, which measures the similarity between initial predic-

tions. A cutoff of 10 Å CaRMSD was used to filter out

those predictions, which were very different from other

available initial models. These models were further fil-

tered using RAPDF. From a collection of initial models,

five best ranked initial models with reasonable CaRMSDs

between each other were selected for deriving the con-

sensus distance constraints and dihedral angles. The

CaRMSDs of the best scoring selected initial models to

the corresponding experimental structures range from 1.6
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to 9.7 Å; these are noted throughout the figures as ‘‘best

scoring initial models.’’

In addition to testing constraints derived from models

selected by RAPDF, to assess the abilities of the refine-

ment method within the idealized case of optimal decoy

selection, we test constraints derived from the closest

models to the experimental conformation, which we

identify by calculating the CaRMSDs of each initial

model to the experimental structure. These constraint

sets are noted throughout the figures as ‘‘best initial

models.’’

Constraint selection by consensus
and RAPDF

For each of the five selected initial protein models, dis-

tances between two nonlocal atoms (separated by more

than four residues) were measured and binned in 0.5 Å

increments (see Methods: residue-specific all-atom proba-

bility discriminatory function). For a given nonlocal

interatomic contact, if the distances observed across the

five initial models all fell within the same distance bin,

the contact was ascribed to the consensus5 group; if four

of the five observed distances fell within the same dis-

tance bin, the contact was ascribed to the consensus4
group. The average of the consensus distances was calcu-

lated for use as the consensus contact distance.

The RAPDF scoring function was novelly implemented

here to calculate the probability of a nonlocal contact

occurring within a given distance bin. Directly, we

extended the application of RAPDF to evaluate one con-

straint at a time instead of the traditional use to evaluate

whole conformations. This was enabled by the direct

relevance of the formalism, to evaluate the occurrence of

a given atom type pair at a given distance within a non-

redundant subset of the Protein Data Bank (PDB)49 ver-

sus random. Thus, each of the consensus contacts (con-

sensus5 and consensus4) was assigned with a RAPDF

score, S(dab). Top RAPDF ranked consensus contacts

were selected for further analysis using the batch-by-

batch selection method described later.

Dihedral angles were derived from the same models

used to produce the interatomic distance sets. The u/w
parameters for each residue were obtained from the

DSSP50 calculation of initial models. For residues in hel-

ices, u/w parameters were each derived from the DSSP

calculation �158; for residues in sheets, u/w parameters

were derived from DSSP calculations �308; for residues

in variable regions, no dihedral restriction was assigned.

Batch-by-batch selection of
consensus constraints

We considered both top ranked consensus5 and con-

sensus4 constraints to be similar candidate sets, such that

assigned tolerance was the only differentiation indicated.

Further selection was performed in a batch-by-batch

manner. The first batches of consensus5 and consensus4
constraints were selected according to the RAPDF rank-

ing. The next batch of constraints was selected from the

next best ranked constraints by filtering out those con-

straints for which the corresponding residue pair was

already represented by another atom pair constituent to

a common residue pair found in a previous batch. This

was done in an effort to eliminate the constraints of

lower accuracy. Sequential batch selection iterations con-

tinued until the residue pairs represented by the selected

constraints obtained 10% of all residue pairs in each

protein sequence.

The tolerance of each constraint was calculated using

the standard deviation (SD) between the distances

observed in different initial models. The tolerances were

calculated as: Tolerance of consensus5 5 0.1*(2 SD 1 1.4

1 (0.2*batch_number)) and Tolerance of consensus4 5
0.1*(2 SD 1 1.8 1 (0.2*batch_number)). Therefore, the

tolerance for constraints of lower ranking and less con-

sensus (assumed to have lower accuracy) was set higher

than those of higher rank and consensus.

rTAD simulations using CYANA

The distance constraints and dihedral angles were

directly input to CYANA, which generated a set of con-

formations satisfying the input constraints using rTAD.

For each parameter combination, a total of 1000 confor-

mations were obtained. All conformations were ranked

by the RAPDF scoring function. The top 10 scoring

models were used for further analysis.

Residue-specific all-atom probability
discriminatory function

A complete description of the RAPDF formalism and

benchmark is found in the original article,38 and subse-

quent study examining effects of parameterization set

quality.39 In summary, we make observations of all non-

local interatomic distances on a dataset of experimentally

determined structures. The conditional probabilities are

compiled by counting frequencies of distances between

pairs of atom types in a dataset of protein structures. All

nonhydrogen atoms are considered and a residue-specific

description of the atoms was used (e.g., the Ca of ala-

nine is different from the Ca of glycine). This results in

a total of 167 atom types. The interatomic distances

observed are divided into 0.5 Å bins ranging from 2 to

20 Å. Contacts between atom types in the 0–2 Å range

are placed in a separate bin, resulting in a total of 37

distance bins.

The scores S(dab) proportional to the negative log condi-

tional probability of observing a native conformation given

an interatomic distance of P(C|dab) are compiled according

to the formula: SðdabÞ ¼ � ln
PðdabjCÞ
PðdabÞ / � lnPðCjdabÞ,

where P(dab|C) is the probability of observing a distance d
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between two atom types a and b in a correct conformation,

and P(dab) is the probability of observing such a distance,

dab, in any conformation, correct or incorrect.

For a minimally redundant dataset of high-quality

experimental structures (sequence identity <30%, resolu-

tion < 2.1 Å CaRMSD), the counts of dab observations

in each structure are summed to generate an overall

probability. Tables of scores S(dab) for all possible pairs

of the 167 atom types for the 37 distance ranges are

compiled from a database of known structures.

Given an amino acid sequence in a particular confor-

mation, the scores of all contacts between atom type

pairs that fall within the distance cutoff are summed to

yield the total ‘‘pseudo-potential’’ score for evaluating the

probability of a conformation being native-like. The for-

mula is SðconformationÞ ¼ �P
ln

Pðdij
ab
jCÞ

Pðdij
ab
Þ / � ln PðCjdijabÞ,

where i and j are atom indexes.
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